231 research outputs found

    Components, drivers and temporal dynamics of ecosystem respiration in a Mediterranean pine forest

    Get PDF
    To investigate the climate impacts on the different components of ecosystem respiration, we combined soil efflux data from a tree-girdling experiment with eddy covariance CO2 fluxes in a Mediterranean maritime pine (Pinus pinaster) forest in Central Italy. 73 trees were stem girdled to stop the flux of photosynthates from the canopy to the roots, and weekly soil respiration surveys were carried out for one year. Heterotrophic respiration (RH) was estimated from the soil CO2 flux measured in girdled plots, and rhizosphere respiration (RAb) was calculated as the difference between respiration from controls (RS) and girdled plots (RH). Results show that the RS dynamics were clearly driven by RH (average RH/RS ratio 0.74). RH predictably responded to environmental variables, being predominantly controlled by soil water availability during the hot and dry growing season (MayeOctober) and by soil temperature during the wetter and colder months (NovembereMarch). High RS and RH peaks were recorded after rain pulses greater than 10 mm on dry soil, indicating that large soil carbon emissions were driven by the rapid microbial oxidation of labile carbon compounds. We also observed a time-lag of one week between water pulses and RAb peaks, which might be due to the delay in the translocation of recently assimilated photosynthates from the canopy to the root system. At the ecosystem scale, total autotrophic respiration (RAt, i.e. the sum of carbon respired by the rhizosphere and aboveground biomass) amounted to 60% of ecosystem respiration. RAt was predominantly controlled by photosynthesis, and showed high temperature sensitivity (Q10) only during the wet periods. Despite the fact that the study coincided with an anomalous dry year and results might therefore not represent a general pattern, these data highlight the complex climatic control of the respiratory processes responsible for ecosystem CO2 emissions. © 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    Joint leaf chlorophyll content and leaf area index retrieval from Landsat data using a regularized model inversion system (REGFLEC)

    Get PDF
    Leaf area index (LAI) and leaf chlorophyll content (Chll) represent key biophysical and biochemical controls on water, energy and carbon exchange processes in the terrestrial biosphere. In combination, LAI and Chll provide critical information on vegetation density, vitality and photosynthetic potentials.However, simultaneous retrieval of LAI and Chll fromspace observations is extremely challenging. Regularization strategies are required to increase the robustness and accuracy of retrieved properties and enable more reliable separation of soil, leaf and canopy parameters. To address these challenges, the REGularized canopy reFLECtance model (REGFLEC) inversion system was refined to incorporate enhanced techniques for exploiting ancillary LAI and temporal information derived from multiple satellite scenes. In this current analysis, REGFLEC is applied to a time-series of Landsat data. A novel aspect of the REGFLEC approach is the fact that no site-specific data are required to calibrate the model, which may be run in a largely automated fashion using information extracted entirely from image-based and other widely available datasets. Validation results, based upon in-situ LAI and Chll observations collected over maize and soybean fields in centralNebraska for the period 2001–2005, demonstrate Chll retrievalwith a relative root-mean-square-deviation (RMSD) on the order of 19% (RMSD = 8.42 μg cm−2). While Chll retrievals were clearly influenced by the version of the leaf optical properties model used (PROSPECT), the application of spatio-temporal regularization constraints was shown to be critical for estimating Chll with sufficient accuracy. REGFLEC also reproduced the dynamics of in-situ measured LAI well (r2 = 0.85), but estimates were biased low, particularly over maize (LAI was underestimated by ~36 %). This disparity may be attributed to differences between effective and true LAI caused by significant foliage clumping not being properly accounted for in the canopy reflectance model (SAIL). Additional advances in the retrieval of canopy biophysical and leaf biochemical constituents will require innovative use of existing remote sensing data within physically realistic canopy reflectancemodels along with the ability to exploit the enhanced spectral and spatial capabilities of upcoming satellite systems

    A spatially downscaled sun-induced fluorescence global product for enhanced monitoring of vegetation productivity

    Get PDF
    Sun-induced chlorophyll fluorescence (SIF) retrieved from satellite spectrometers can be a highly valuable proxy for photosynthesis. The SIF signal is very small and notoriously difficult to measure, requiring sub-nanometre spectral-resolution measurements, which to date are only available from atmospheric spectrometers sampling at low spatial resolution. For example, the widely used SIF dataset derived from the GOME-2 mission is typically provided in 0.5∘ composites. This paper presents a new SIF dataset based on GOME-2 satellite observations with an enhanced spatial resolution of 0.05∘ and an 8 d time step covering the period 2007–2018. It leverages on a proven methodology that relies on using a light-use efficiency (LUE) modelling approach to establish a semi-empirical relationship between SIF and various explanatory variables derived from remote sensing at higher spatial resolution. An optimal set of explanatory variables is selected based on an independent validation with OCO-2 SIF observations, which are only sparsely available but have a high accuracy and spatial resolution. After bias correction, the resulting downscaled SIF data show high spatio-temporal agreement with the first SIF retrievals from the new TROPOMI mission, opening the path towards establishing a surrogate archive for this promising new dataset. We foresee this new SIF dataset becoming a valuable asset for Earth system science in general and for monitoring vegetation productivity in particular. The dataset is available at https://doi.org/10.2905/21935FFC-B797-4BEE-94DA-8FEC85B3F9E1 (Duveiller et al., 2019)

    Vulnerability of European forests to natural disturbances

    Get PDF
    European forests provide a set of fundamental services that contribute to climate change mitigation and human well-being. At the same time, forests are vulnerable systems because the long life-span of trees limits the possibility of rapid adaptation to drastic environmental changes. Climate-driven disturbances in forests, such as fires, windstorms and insect outbreaks, are expected to rise drastically under global warming. As a result, key forest services, such as carbon sequestration and supply of wood materials, could be seriously affected in the near future. Despite the relevance and urgency of the issue, little is known about the vulnerability of European forests to multiple climate-related hazards and the adaptation benefits of alternative forest management strategies. To fill this knowledge gap we investigated the susceptibility of European forests when exposed to a given natural disturbance under different forest management scenarios. For this purpose, we assessed forest vulnerability by integrating in a data-driven framework satellite observations, national forest inventories, land surface climatic data and records of disturbances over the 2000-2017 period. The integration of these data streams is meant to capture the key drivers of vulnerability and to quantify, for the first time, the vulnerability of European forests to fires, windstorms and insect outbreaks in a systematic and spatially explicit manner. We point out that, the term vulnerability is used in this study to express to what degree a forest ecosystem is affected when exposed to a given disturbance. In order to derive risk estimates, vulnerability estimates should be integrated with hazard and exposure components, according to typical impact assessment frameworks. Results of this analyses show that in average at Europe level forest vulnerability to windstorms appears the disturbance with larger biomass loss both in relative and absolute terms (~38%, ~17 t ha-1) compared to fires (~24%, ~12.5 t ha-1) and insect outbreaks (~21%, ~9 t ha-1). Substantial spatial variations in vulnerability emerge and depict generally higher values in norther and Mediterranean regions. Overall, forest structural properties play a larger control on the vulnerability of European forests to natural disturbances compared to climate and landscape features. However, increases in temperature and changes in precipitation patterns occurred over the last two decades, have contributed substantially to make European forests more vulnerable to natural disturbances. We found that these changes in climate led to a limited increase in vulnerability at Europe for fires and windstorms and to a strong increase for insect outbreaks. However, contrasting regional trends emerging over Europe mask relevant temporal changes in vulnerability occurring at local scale. When analyses of single disturbances are combined together, results show that large part of the European forests are substantially vulnerable to at least one natural disturbance and that many of the areas more vulnerable have been subject to an amplification of vulnerability over the observational period due to changes in climate. Reducing tree age and tree density appear effective forest management strategies to reduce the vulnerability of European forests to climate-driven disturbances. The magnitude of the potential benefits appears strongly dependent on local environmental conditions. Previous assessments of future climate risks to European forests, based on catalogues of disturbances collected at country level, have showed that damage from fires, windstorms and insect outbreaks is likely to increase further in coming decades. Such intensification could offset the impact of land-based strategies aiming to increase the forest carbon sink. However, the country scale approach used in such studies do not allow to explore in detail the underlying physical processes and to elaborate adaptation strategies at appropriate local scales. It is therefore fundamental to elaborate new modelling approaches that address in explicit manner the high spatial and temporal variability of forest disturbances. In this respect, machine learning approaches and the increasing availability of multi-platform satellite observations of land surface in combination with high regional climate model simulations, represent valuable opportunities to appraise the impact of forest disturbances at a spatial and temporal resolution relevant for forest management strategies. This explorative study represents a first step towards such integrated framework.JRC.D.1-Bio-econom

    How do variations in the temporal distribution of rainfall events affect ecosystem fluxes in seasonally water-limited Northern Hemisphere shrublands and forests?

    Get PDF
    As a result of climate change, rainfall regimes became more extreme over the course of the 20th century, characterised by fewer and larger rainfall events. Such changes are expected to continue throughout the current century. The effect of changes in the 5 temporal distribution of rainfall on ecosystem carbon fluxes is poorly understood, with most available information coming from experimental studies of grassland ecosystems. Here, continuous measurements of ecosystem carbon fluxes and precipitation from the worldwide FLUXNET network of eddy-covariance sites are exploited to investigate the effects of differences in rainfall distribution on the carbon balance of seasonally water10 limited shrubland and forest sites. Once the strong dependence of ecosystem fluxes on total annual rainfall amount is accounted for, results show that sites with more extreme rainfall distributions have significantly lower gross productivity, slightly lower ecosystem respiration and consequently a smaller net ecosystem productivity.JRC.H.7-Climate Risk Managemen

    Seasonal trends and environmental controls of methane emissions in a rice paddy field in Northern Italy

    Get PDF
    Rice paddy fields are one of the greatest anthropogenic sources of methane (CH4), the third most important greenhouse gas after water vapour and carbon dioxide. In agricultural fields, CH4 is usually measured with the closed chamber technique, resulting in discontinuous series of measurements performed over a limited area, that generally do not provide sufficient information on the short-term variation of the fluxes. On the contrary, aerodynamic techniques have been rarely applied for the measurement of CH4 fluxes in rice paddy fields. The eddy covariance (EC) technique provides integrated continuous measurements over a large area and may increase our understanding of the underlying processes and diurnal and seasonal pattern of CH4 emissions in this ecosystem. For this purpose a Fast Methane Analyzer (Los Gatos Research Ltd.) was installed in a rice paddy field in the Po Valley (Northern Italy). Methane fluxes were measured during the rice growing season with both EC and manually operated closed chambers. Methane fluxes were strongly influenced by the height of the water table, with emissions peaking when it was above 10–12 cm. Soil temperature and the developmental stage of rice plants were also responsible of the seasonal variation on the fluxes. The measured EC fluxes showed a diurnal cycle in the emissions, which was more relevant during the vegetative period, and with CH4 emissions being higher in the late evening, possibly associated with higher water temperature. The comparison between the two measurement techniques shows that greater fluxes are measured with the chambers, especially when higher fluxes are being produced, resulting in 30% higher seasonal estimations with the chambers than with the EC (41.1 and 31.7 gCH4 m−2 measured with chambers and EC respectively) and even greater differences are found if shorter periods with high chamber sampling frequency are compared. The differences may be a result of the combined effect of overestimation with the chambers and of the possible underestimation by the EC technique.JRC.H.7-Climate Risk Managemen

    Biases in the albedo sensitivity to deforestation in CMIP5 models and their impacts on the associated historical radiative forcing

    Get PDF
    Climate model biases in the representation of albedo variations between land cover classes contribute to uncertainties on the climate impact of land cover changes since pre-industrial times, especially on the associated radiative forcing. Recent publications of new observation-based datasets offer opportunities to investigate these biases and their impact on historical surface albedo changes in simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Conducting such an assessment is, however, complicated by the non-availability of albedo values for specific land cover classes in CMIP and the limited number of simulations isolating the land use forcing. In this study, we demonstrate the suitability of a new methodology to extract the albedo of trees and crops–grasses in standard climate model simulations. We then apply it to historical runs from 17 CMIP5 models and compare the obtained results to satellite-derived reference data. This allows us to identify substantial biases in the representation of the albedo of trees and crops–grasses as well as the surface albedo change due to the transition between these two land cover classes in the analysed models. Additionally, we reconstruct the local surface albedo changes induced by historical conversions between trees and crops–grasses for 15 CMIP5 models. This allows us to derive estimates of the albedo-induced radiative forcing from land cover changes since pre-industrial times. We find a multi-model range from 0 to −0.17 W m−2, with a mean value of −0.07 W m−2. Constraining the surface albedo response to transitions between trees and crops–grasses from the models with satellite-derived data leads to a revised multi-model mean estimate of −0.09 W m−2 but an increase in the multi-model range. However, after excluding one model with unrealistic conversion rates from trees to crops–grasses the remaining individual model results vary between −0.03 and −0.11 W m−2. These numbers are at the lower end of the range provided by the IPCC AR5 (−0.15±0.10 W m−2). The approach described in this study can be applied to other model simulations, such as those from CMIP6, especially as the evaluation diagnostic described here has been included in the ESMValTool v2.0

    EU-Trees4F, a dataset on the future distribution of European tree species

    Get PDF
    We present "EU-Trees4F", a dataset of current and future potential distributions of 67 tree species in Europe at 10 km spatial resolution. We provide both climatically suitable future areas of occupancy and the future distribution expected under a scenario of natural dispersal for two emission scenarios (RCP 4.5 and RCP 8.5) and three time steps (2035, 2065, and 2095). Also, we provide a version of the dataset where tree ranges are limited by future land use. These data-driven projections were made using an ensemble species distribution model calibrated using EU-Forest, a comprehensive dataset of tree species occurrences for Europe, and driven by seven bioclimatic parameters derived from EURO-CORDEX regional climate model simulations, and two soil parameters. "EU-Trees4F", can benefit various research fields, including forestry, biodiversity, ecosystem services, and bio-economy. Possible applications include the calibration or benchmarking of dynamic vegetation models, or informing forest adaptation strategies based on assisted tree migration. Given the multiple European policy initiatives related to forests, this dataset represents a timely and valuable resource to support policymaking.Peer reviewe
    • …
    corecore